Approximating Correlated Defaults

Dale W.R. Rosenthal

Department of Finance
University of Illinois at Chicago

International Conference on Credit Analysis and Risk Management
Oakland University
23 July 2011
Introduction

- Since 1980s: debut of fixed-income portfolio products.
- Useful: allocate risks via securitization.
 - CMOs (prepayment risk); CDOs, CDSs (default risk).
- Allocating these risks reduces borrowing costs for all.
- Must measure portfolio risk; cannot assume independence.
 - Typical portfolio metric: correlation/covariance matrix.
 - However, correlation is linear; default is non-linear.
- Ideally, we would like to:
 - Understand default dependence/clustering; and,
 - Measure portfolio diversification.
Results

- Find approximation for intuitive reduced-form model.
- Approximation is elegant, consistent, and novel.
- Yields idea: default-approximating portfolio of iid bonds/loans.
- This approach also gives us two useful risk metrics:
 - ILC = iid loan count in default-approximating portfolio;
 - IDR = iid default rate of those iid loans.
- Also, this lets us approximate the default-time distribution.
CDOs and CDSs

- Collateralized debt obligations (CDOs) are complicated.
- CDO tranches give priority of allocating defaults to investors.
- Credit default swaps (CDSs), written on bonds/CDOs.
- CDOs and CDSs are just bond/bond portfolio derivatives.
- The difficulty in modeling CDOs/CDSs: they involve defaults.
- Tough because defaults are rare events.
- A CDO tranche (e.g. first 5% of defaults) seems harder.
- Turns out some theory handles tranches with ease.
Time to Default

- Think of defaults as involving two pieces:
 - Time to default ($\simeq PD$, our concern); and, loss given default.
- Often model waiting times as exponentially-distributed.
 - Like flipping coins every time period.
 - If k heads, a default occurs.
Correlated Defaults: Why?

- However, it seems likely that defaults are related.
- More simply:
 - Do we think defaults stay constant in recessions?
 - Are laid-off coworkers all more likely to default?
- Formally: Borrowers may share certain risk factors.
 - Sensitivity to national, local economy; and,
 - Sensitivity to certain industries, companies.
- Past few years: record losses on portfolio defaults.
- Seems default correlations/dependence were not well-modeled.
Correlated Defaults: Difficult

- Why were these dependence structures ignored?
- Jarrow and Yu (2001) modeled 2 bonds with cross-holding issuers.
 - For more bonds “working out these distributions is more difficult.”
- Even harder if we are considering a tranche of a CDO.
- What if we knew each bond’s default distribution, dependences?
 - Exact portfolio default distribution is still very difficult.
- How to model dependence?
 - Typically: Copulas. Easy to use vs. opaque, nonlinear mapping.
 - I approximate average portfolio default distribution.
Approximating Correlated Defaults

First assume a structural-ish reduced-form model:
- Events occur when random “alarm clocks” go off\(^1\).
- Alarms related to systematic (common) risk factors; and,
- Alarms related to idiosyncratic (borrower-specific) risks.

The model dynamics can then be thought of as:
- When idiosyncratic alarm rings, that borrower defaults.
- When systematic alarm rings, macro event occurs (e.g. US recession).
- Idiosyncratic clocks then speed up for exposed borrowers.

This allows a statistical approximation (Edgeworth expansion).

\(^1\)The exponential timers we refer to in stochastic processes.
Edgeworth Expansions

- Edgeworth expansion: base distribution plus correction terms.
- Expansions use cumulants (like centered moments).
 - First four cumulants: mean, variance, skewness, kurtosis.
- Cumulants determine base distribution parameters, corrections.
- Typically, the base distribution is the normal distribution.
- Instead, I expand about a gamma distribution:
 - Sum of iid exponential random variables is gamma-distributed.
 - Sum of non-iid, correlated exponential r.v.s?
 - Base gamma distribution implied by cumulants is close.
Edgeworth Expansion of Gamma

What do expansions look like? If Y is average default time,

$$\hat{f}_Y(y) = \gamma_{\hat{\nu},\hat{\lambda}}(y) + \frac{\kappa_3 \hat{\lambda}^3 - 2\hat{\nu}}{6} \sum_{i=0}^{3} (-1)^{3-i} \binom{3}{i} \gamma_{\hat{\nu}-i,\hat{\lambda}}(y)$$

$$+ \frac{\kappa_4 \hat{\lambda}^4 - 6\hat{\nu}}{24} \sum_{i=0}^{4} (-1)^{4-i} \binom{4}{i} \gamma_{\hat{\nu}-i,\hat{\lambda}}(y)$$

$$+ \frac{(\kappa_3 \hat{\lambda}^3 - 2\hat{\nu})^2}{72} \sum_{i=0}^{6} \binom{6}{i} (-1)^{6-i} \gamma_{\hat{\nu}-i,\hat{\lambda}}(y)$$

$$+ O(n^{-3/2}) \quad (1)$$

Mean, variance, skewness, kurtosis: $\frac{\hat{\nu}}{\hat{\lambda}}, \frac{\hat{\nu}}{\hat{\lambda}^2}, \kappa_3, \kappa_4$.
Economic Meaning of Parameters

- Edgeworth expansion parameters yield economic insight.
- $\hat{\nu}$ is the iid-equivalent loan count (ILC).
 - Unrelated, equal-size loans needed for similar default risk.
 - “This portfolio defaults like a portfolio of $\hat{\nu}$ iid bonds.”
 - Thus ILC $\hat{\nu}$ measures portfolio default-relative diversification.
 - Theoretically-based metric vs Moody’s KMV “diversity score.”

- $\hat{\lambda}$ is the iid-equivalent default rate (IDR).
 - Measures credit quality/default probability of iid loans.

- Pseudocumulants $(\frac{\kappa_3 \hat{\lambda}^3}{6} - 2\hat{\nu}, \frac{\kappa_4 \hat{\lambda}^4}{24} - 6\hat{\nu}) \Rightarrow$ default clusters.
Weaknesses of This Approach

- One problem: We have switched terminology.
- Want: portfolio default times; instead model *average* default times.
- Often use Edgeworth expansions to model non-average distributions.
- Chambers (1967): this is OK if regularity conditions hold.
- Further, the ideas may still translate to the portfolio.
- Caveats:
 - Expansions may yield areas of “negative probability.”
 - Portfolio cumulants estimated via censored individual loans.
Simulation: 200-bond CDO Equity Tranche

- Simulate 5% equity tranche of a 200-bond subprime CDO.²
- Risk factor: US economy. (average 1 event/20 years)
- Mean unaccelerated default times 5–20 years (BBB–BB credit).
- Crisis-accelerated default times 1–4 years (B–CCC credit).
- Use cumulants of equity tranche (first 10) default times.

MSEs:
- Normal Edge.: 0.0034
- Gamma base: 0.0006
- Gamma Edge.: 0.0306
- Mèlange Edge.: 0.0051

²Exaggerated number of bonds (200 \(\approx \) 125) for illustration.
Simulation: Interpretation

- Can see value of gamma base distribution.
- 10 bonds in equity tranche have ILC $\hat{\nu} = 7.8$ bonds.
- Those 7.8 bonds would have IDR $\hat{\lambda} = 6$/year.
- Thus mean time to default ≈ 2 months (C credit).
- Tranche distribution implied by approximating portfolio:
 - Tranche life $\sim \text{Exp}(\hat{\lambda}/\hat{\nu})$.
 - Mean tranche life: 15.6 months.
General: Modeling Ease

- We can easily observe prior (realized) default times.
- Can also use estimates of macro risk event frequencies.
- May then use survival analysis, maximum likelihood:
 - Allows us to estimate unobserved cumulants.
 - Estimating these cumulants is a much simpler problem.
- Estimated cumulants imply average default distribution.
- That helps us assess value/risk of CDO tranches, CDSs.
- I give an example of this in the paper.
Conclusion

- Found distribution approximation for mean bond default time.
 - Leads to an elegant (novel?) Edgeworth expansion.
 - Consistent for structural model of interacting “alarms.”
- Approximating portfolio parameters also have economic meaning:
 - $\hat{\nu}$: ILC = iid loan count in approximating portfolio.
 - $\hat{\lambda}$: IDR = iid loan default rate in approximating portfolio.
- May be used to imply default distribution for tranche/portfolio.