Market Structure, Counterparty Risk, and Systemic Risk

Dale W.R. Rosenthal1

UIC, Department of Finance

18 December 2012
Reserve Bank of New Zealand conference

1daler@uic.edu; tigger.uic.edu/\sim daler
Counterparty Risk

- **Counterparty**: other side of ongoing financial agreement.
 - A bank enters into a swap with you on the S&P 500.
- **Counterparty Risk**
 - Risk resulting from default/bankruptcy of a counterparty.
 - Strictly: Risk to you from one of your counterparties.
 - Broadly: Includes effects on overall market (our concern).
- This broad definition we refer to as *systemic risk*.
Counterparty Risk to Systemic Risk

- Counterparty risk affects market when large failure looms:
 - Near-bankruptcy of Bear Stearns (May 2008)
 - Bankruptcy of Lehman Brothers (Sep 2008)
 - Bankruptcy of Refco Inc? (Oct 2005, owned #1 CME broker)

- Outstanding notional at CME before ceasing trading:
 - Bear: $761 BB
 - Lehman: $1,150 BB
 - Refco LLC: $130 BB

- N.B. No defaults or trade halts at CME for these events.

- Is counterparty risk an “accelerant” in financial crises?
Distress increases volatility sharply and significantly.

- Widens spreads: transactions costs \uparrow; market liquidity \downarrow.
- Volatility is pushed onto the survivors (externality).

Crisis bankruptcies have real costs:

- Virtuous, vicious circles of market and funding liquidity2.
- Reduced funding liquidity affects non-financial firms also.
- Less invested in risky assets; allocative inefficiency?
- Higher unemployment: harder job searches, lower tax revenue.
- Bernanke (1983): affects credit markets; possible depression.

Market structure affects contagion and exposure to defaults.

Specifically: complete networks magnify systemic risk.
 - Difference due to differing creation of complete networks.
 - Also: financial, banking networks differ (cf Acemoglu).

Market fragility estimable with a few metrics of market core.

Can price distress volatility of differing structures.
Model: Market Structures

- Investigate two extremes of n-counterparty networks.

\[
\begin{align*}
\text{Star network} & \quad \text{Complete network} \\
\text{(Market with CCP3)} & \quad \text{(Bilateral “OTC” market)}
\end{align*}
\]

- Each node is a counterparty (capital K, risk aversion λ).
- Each edge is a contract4 linking counterparties i and j.
- Contract exposure: $q_{ij} = -q_{ji}$; $q_{i<j} \sim iid N(0, \eta^2)$
- Counterparty i’s net exposure: $Q_i = \sum_{j \neq i} q_{ij}$.
- Same net exposures (Q_i’s) in both networks.

3Central counterparty.

4A swap or forward on a risky asset.
To study counterparty risk, events occur at discrete times.

\(t = 0 \): Bankruptcy of counterparty \(n \) occurs.
- All contracts with counterparty \(n \) are invalidated.
- Pushes unwanted exposure onto other \(n - 1 \) counterparties.

\(t = 1 \): Living counterparties trade in response to bankruptcy.

\(t = 2 \): Living counterparties close out bankruptcy-induced exposure.

Order of trading in a period is random, not strategic.
Model: Price Impact of Trading

- Each counterparty i trades x_i shares at time $t = 1$.
 - Impact has linear permanent component.\(^5\)
 - Permanent component impacts prices for later traders.
- Trade ordering, price impact create low and high prices.
- Time periods are very short; two simplifying assumptions:
 1. Prices have no drift other than price impact due to trading.
 2. Price diffusion is Gaussian (not log-normal).
- Defer handling crisis-related adverse selection.

\(^5\)Price impact could arise from inventory risk cost, non-crisis adverse selection.
Suppose counterparty A is net long the market.
⇒ Other counterparties are net short the market.
These are their preferred equilibrium positions.
Thus when counterparty A defaults:
- Survivors must re-create exposure from counterparty A.
- Survivors become net sellers.
CCP market: only CCP trades; net sell.
OTC market: some counterparties will sell, some will buy.
However, counterparties trade in own interest.
- Do they rehedge immediately? Push market further?
Consider bankruptcy of a large financial firm.

Assume large market move r_0 at $t = 0$ induces bankruptcy.

Net exposure Q_n probably large; estimate via EVT\(^6\).

$$\hat{Q}_n = -\frac{K}{r_0} + \frac{\eta\sqrt{n-1}}{c_n(1-e^{-e^{-c_n\kappa_1-d_n}})} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}e^{-k(c_n\kappa_1+d_n)}}{kk!}$$

where $\kappa_1 = \frac{-K}{r_0\eta\sqrt{n-1}}$ (minimum exposure causing death),

$c_n = \frac{1}{\sqrt{2\log(n)}}$, and $d_n = \sqrt{2\log(n)} - \frac{\log\log(n)+\log(16\tan^{-1}(1))}{2\sqrt{2\log(n)}}$.

\(^6\)Equivalent: endow all counterparties with perfect information, examine most likely $Q_n|r_0$.
Large Bankruptcies

- For large Q_n, trading at $t = 1, 2$ will move market a lot.
- Move will be further in direction that caused bankruptcy.
- This raises two distressing possibilities:
 - Contagion: move may cause other counterparties to fail; or,
 - Checkmate: hedging may bankrupt the hedger.

- Counterparties anticipate these, respond selfishly.

- For bilateral OTC market, all counterparties may trade.
 - All hedge anticipated follow-on bankruptcy exposure \hat{Q}_f.
 - Trouble: $\nu > 1$ (overtrading at $t = 1$) to be expected.
 - Longs, shorts may largely self-segregate rehedge timing.

- Thus network structure matters.
Large Bankruptcy: Equilibrium CCP Trade

- CCP anticipates follow-on bankruptcies; equilibrium yields
- Follow-on bankruptcy exposure \(\hat{Q}_f \) (distress exposure):

\[
\hat{Q}_f = (n - 1)^{3/2} \eta \frac{\phi(\kappa_2) - \phi(\kappa_1)}{\Phi(\kappa_1)}
\]

where

\[
\kappa_2 = \frac{-Kp_0 / [\eta \sqrt{n - 1}]}{p_0 r_0 - \pi (\hat{Q}_n + \hat{Q}_f)} = \text{min exposure for follow-on death.}
\]

- # follow-on bankruptcies \(\hat{b} \) (distress pervasiveness):

\[
\hat{b} = (n - 1) \frac{\int_{\kappa_2}^{\kappa_1} \phi(z) dz}{\int_{-\infty}^{\kappa_1} \phi(z) dz} = (n - 1) \left(1 - \frac{\Phi(\kappa_2)}{\Phi(\kappa_1)} \right)
\]
Large Bankruptcy: Equilibrium OTC Net Trade

- OTC traders anticipate one another, follow-on bankruptcies.
- However: those most at-risk rehedge quickly, others delay.
- Random trade sequence ⇒ uncertain low of rehedging $S_{n−1}$.
- Use these to solve for equilibrium OTC net trade.

\[
\begin{align*}
\kappa_2 &= \frac{-Kp_0}{\eta\sqrt{n - 1}(p_0 r_0 + \pi E(S_{n-1}|\nu))}, \\
\hat{Q}_f &= (n - 1)^{3/2} \frac{\phi(\kappa_2) - \phi(\kappa_1)}{\Phi(\kappa_1)}.
\end{align*}
\]

- Important to note that $\nu \geq 1$ (in $E(S_{n-1})$).
- Finding ν is hard: n-player (random) game; usually c1.75.
Bad Behavior? Checkmate and Hunting

Proposition (Checkmate)

A large enough initial bankruptcy may yield a follow-on bankruptcy in expectation — despite any finite effort by the troubled counterparty.

Proposition (Hunting)

For a complete network of 3 or more counterparties and a large enough initial bankruptcy, two or more other counterparties may profit by driving a survivor into (follow-on) bankruptcy.
Another (extreme) possibility exists in bilateral OTC markets:

- Buyers and sellers may separate when they trade.
- Those who are same side as net rehedge rush to hedge first.
- Those on other side wait to allow maximum distress.
- If net rehedge makes sellers panic, net sale in period 1 is:

$$-E\left(\sum_{i=1}^{n-1} x_i \mid \sum_{i=1}^{n-1} x_i = -\hat{Q}_n - \hat{Q}_f\right)$$

$$\approx -(n-1)^{3/2} \eta \phi(\mu^*) - (\hat{Q}_n + \hat{Q}_f)(1 - \Phi(\mu^*))$$

where $$\mu^* = \frac{\hat{Q}_n + \hat{Q}_f}{(n-1)^{3/2} \eta}$$ (net rehedge in std devs/survivor)

and $$\phi, \Phi$$ are standard normal pdf, cdf.
Consider large bankruptcy for $n = 10$ counterparties\(^7\).

Std deviation of bilateral contract exposure $\eta = 1,000,000$.

Distress exposure \hat{Q}_f and pervasiveness \hat{b} vs. \hat{Q}_n.

Lines: (P)ooled OTC; (S)eparated OTC; (C)CP

$P - S$: Envelopes of distress exposure, pervasiveness

\(^7\)Price impact parameters are as in Almgren and Chriss (2001).
Large Bankruptcies: Example of Market Impact

- Suppose $\hat{Q}_n = 10,000,000$; GARCH variance decay of 0.9.
- For CCP market:
 - Expected market impact: $-\$30$.
 - Effective annual volatility goes from 30% to 38%.
- If pooled OTC buyers, sellers overtrade $1.75 \times$ at $t = 1$.
 - Expected market impact: $-\$31$.
 - Annual volatility ↑ to 328% (instant.), 146% (effective).
- If OTC buyers and sellers separate, at $t = 1$:
 - Expected market impact: $-\$41$.
 - Annual volatility ↑ to 596% (instant.), 268% (effective).
Large Bankruptcies: Example of Real Effects

- Suppose $\hat{Q}_n = 10$ MM, market size of 40 MM8.
- If 8% equity premium and mean risk aversion of $\hat{\lambda} = 3$:
 - Equilibrium allocation to risky asset: 29% (71% cash).
 - Post-crisis: 19% (CCP), 1.2% (OTC pool), 0.4% (OTC sep).
- Cost of distress externality:
 - 3.2 MM (CCP), 123 MM (OTC pool), 425 MM (OTC sep).
 - Cost of OTC market distress is $3–11 \times$ market size.
- Given 2–3 bankruptcies; mean employees, compensation:
 - 260,000–400,000 unemployed; $33–$49 billion pay loss.
 - At 40% total taxes: revenue loss of $13–$20 billion.
- Also affects credit markets, overall macroeconomy.

8Approximately $2(\hat{Q}_n + \hat{Q}_f)$.
Large Bankruptcies: Not So Random

- Complete networks admit two destabilizing events:
 - Checkmate: weak counterparty may have no beneficial trade.
 - Hunting: counterparties force others into bankruptcy.
- Worse, hunting is a full equilibrium behavior.
 - Market may be pushed far beyond one follow-on bankruptcy.
- Are counterparties selfishly amoral/evil? Maybe not.
 - Trade amount may pre-hedge expected follow-on bankruptcies.
 - This reduces surprise need for trading in period 2.
- CCP markets have fewer such destabilizing events.
 - Suggests central clearing reduces OTC market volatility.
Difference from Allen and Gale (2000)

- Allen and Gale (2000): complete networks are more robust.
- I disagree: complete networks are more fragile.
- Allen and Gale approach: top-down.
 - Net exposure: \(Q_i \overset{iid}{\sim} N(0, (n-1)\eta^2) \)
 - Contract exposure: \(q_{ij} = Q_i/(n-1) \). (all same sign)
- My approach: bottom-up.
 - Contract exposure: \(q_{ij} \overset{iid}{\sim} N(0, \eta^2); q_{ij} = -q_{ji}; \)
 - Net exposure: \(Q_i = \sum_{j \neq i} q_{ij}; Q_i \overset{iid}{\sim} N(0, (n-1)\eta^2). \)
- Same net exposures \(Q_i \)'s, different contract exposures \(q_{ij} \)'s.
- Strategic separation of buyers, sellers unlikely in A&G.
Conclusion

- Even small bankruptcies temporarily increase volatility.
- For a large bankruptcy in a bilateral OTC market:
 - Counterparties may be unable to save themselves (checkmate).
 - Counterparties may hunt their weakest peers for profit.
 - Volatility externality (and thus cost) higher than CCP market.
- Self-segregating buyers, sellers in OTC markets can be nasty:
 - Externality distress cost \gg market size. (market failure?)
- Suggests benefits to centralized clearing in OTC markets\(^9\).
- Volatility externality cost \Rightarrow when to move markets to CCP.
- May be able to measure when markets are more/less brittle.
 - n, η, \bar{K} for part of market like complete network.

\(^9\)Biais, Heider, Hoerova (2011) suggests CCP is capital efficient.
Further Commentary

Since we are under Chatham House Rules... further thoughts.

- What about collateral, MTM, global netting?
 - We used all of these at LTCM; it wasn’t enough.
 - Say A, B swap; C does many swaps: all swaps now riskier.

- Transition to CCP: slow? 6 mos. to flatten LTCM IRSwaps.

- Fixed income structured products are nastier to analyze.
 - Rosenthal: Crises accelerate defaults \Rightarrow correlated.

- Thus there is a need for full information and coordination.

- Tax OTC trades? May be macroprudential.
 - Tax on-exchange trades? No. (Rosenthal and Thomas)

- Stable/unstable spirals: market liq affects funding liq?
 - Market-based funding responds faster (TED=40 bp vs 80 bp).

10 And some shameless plugs.
11 Brunnermeier and Pedersen (2009)